点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:凤凰微彩 - 凤凰微彩
首页>文化频道>要闻>正文

凤凰微彩 - 凤凰微彩

来源:凤凰微彩2023-09-14 17:48

  

凤凰微彩

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

秉持生态文明理念 促进人与自然和谐共生******

  秉持生态文明理念 促进人与自然和谐共生(坚持和完善人民代表大会制度)

  朱鹮野外种群从1981年的7只增加到6000余只,藏羚羊野外种群从7万只增加到约30万只,在野外一度消失的野马、麋鹿重新建立起野外种群……这些野生动物种群的恢复,离不开这些年来野生动物保护相关法律法规的保驾护航。

  2022年12月30日,十三届全国人大常委会第三十八次会议表决通过了修订后的野生动物保护法,将于2023年5月1日起施行。

  “此次野生动物保护法修改,为了加强对重要生态系统保护和修复,坚持保护优先、规范利用、严格监管的原则,积极回应社会关切。”全国人大常委会法工委经济法室主任岳仲明表示,新修订的野生动物保护法进一步完善野生动物保护和管理制度,加大对违法行为的处罚力度,做好与生物安全法、动物防疫法、畜牧法等相关法律的衔接,秉持生态文明理念,推动绿色发展,促进人与自然和谐共生。

  科学立法、民主立法

  与新形势下野生动物保护实际需要相适应

  “2021年云南大象北上及返回之旅,让世界看到了我国保护野生动物的成果。”岳仲明介绍,现行野生动物保护法于1988年制定,2004年、2009年和2018年三次修正,2016年进行了修订,“现行野生动物保护法在加强野生动物及其栖息地保护和拯救繁育工作,维护生物多样性、推进生态文明建设等方面发挥了重要作用。”

  2020年5月至7月,全国人大常委会组织开展了《关于全面禁止非法野生动物交易、革除滥食野生动物陋习、切实保障人民群众生命健康安全的决定》和野生动物保护法执法检查。此次执法检查的一项重要任务是评估野生动物保护法,广泛收集各方面对法律修改的意见建议,为修改完善野生动物保护法提供依据。

  “检查中多地反映,现行野生动物保护法以及配套的行政法规、地方性法规与新形势下野生动物保护的实际需要不相适应。”执法检查报告显示,存在野生动物保护法与相关法律衔接不够等问题,表明相关法律制度亟待修改完善。

  对此,野生动物保护法在修订过程中广泛征求和充分听取各方面意见,最大限度吸纳民意、汇聚民智,科学决策。

  2020年10月,十三届全国人大常委会第二十二次会议对野生动物保护法修订草案进行了初次审议。会后,全国人大常委会法工委将修订草案印发各省(区、市)人大和中央有关部门、全国人大代表、研究机构、基层立法联系点等征求意见,并在中国人大网全文公布修订草案,征求社会公众意见。

  2022年8月,野生动物保护法修订草案二次审议稿提交十三届全国人大常委会第三十六次会议审议。“会后公开征求意见期间,共收到3806位社会公众提出的12057条意见,另收到来信11封。”全国人大常委会法工委发言人臧铁伟介绍,社会公众主要就规范野生动物人工繁育、展演、放生等提出了意见建议,相关意见建议在草案三次审议稿中作了体现。

  修法完成后,推动新修订的野生动物保护法实施已提上日程。岳仲明表示,国务院有关部门和地方要加快制定、完善相关配套规定,健全联合执法工作协调机制,严格执法,加强行政执法与刑事司法衔接,依法打击违法犯罪行为,实现生态环境保护和经济高质量发展双赢。

  回应社会关切

  加强外来物种防控、细化野生动物种群调控措施

  近年来,诸如外来物种入侵、野生动物损害人身财产安全问题等新闻不时见诸媒体,引起社会关注。野生动物保护法在修订中对这些社会热点问题也予以了积极回应。

  “新修订的野生动物保护法明确规定,从境外引进的野生动物物种不得违法放生、丢弃,确需将其放生至野外环境的,应当遵守有关法律法规的规定。”岳仲明介绍,发现来自境外的野生动物对生态系统造成危害的,县级以上人民政府野生动物保护等有关部门应当采取相应的安全控制措施。

  北京林业大学经济管理学院教授谢屹表示,外来物种危害是全方位的,不仅导致本地物种灭绝、生态系统结构和功能改变、退化以至生态系统服务功能丧失,更严重危害到生态安全和生物安全,“应当选择适合放生地野外生存的当地物种,才能够实现因‘放’而‘生’。”

  此次修法中,还增加了“国务院野生动物保护主管部门应当会同国务院有关部门加强对放生野生动物活动的规范、引导”等内容。“一些社会公众放生的出发点是好的,但放生必须尊重自然规律,做到合法有序。”武汉大学环境法研究所所长秦天宝表示,随意放生野生动物,造成他人人身、财产损害或者危害生态系统的,需要依法承担法律责任。

  此次修订中,对野生动物种群调控措施的细化也成为一大看点。

  近年来,随着我国生态环境持续改善,一些地方野猪等野生动物泛滥成灾,危害群众人身财产安全和农牧生产。“野生动物肇事的问题根源在于野生动物活动区域与当地群众生产生活区域的空间重叠。”谢屹表示,得益于我国多年持续重视野生动物保护工作,野生动物种群数量持续增长,但作为关键栖息地的自然保护地因为面积既定和生态承载力有限,导致了此类问题呈现加剧态势。

  此次修法对野生动物种群调控措施予以细化,其中规定县级以上人民政府野生动物保护主管部门根据野生动物及其栖息地调查、监测和评估情况,对种群数量明显超过环境容量的物种,可以采取迁地保护、猎捕等种群调控措施,保障人身财产安全、生态安全和农业生产。

  “根据新修订的野生动物保护法,在野生动物危及人身安全的紧急情况下,采取措施造成野生动物损害的,依法不承担法律责任。”秦天宝表示,修订后的野生动物保护法,还将中央财政对致害防控的补助范围由国家重点保护野生动物扩大到其他致害严重的陆生野生动物,“因此诸如野猪等野生动物也被纳入其中。”

  凝聚各方合力

  为野生动物保护公益诉讼提供直接法律依据

  做好野生动物保护法实施工作需要社会各方面共同努力。近年来,随着公益诉讼制度在凝聚生态环境保护合力方面作用愈发凸显,此次修法新增的公益诉讼相关条款,对满足实践发展需要和破解制度发展瓶颈是关键一步。

  “此前,依据环境保护法等法律法规,野生动物保护实际上已经‘隐含’在了公益诉讼适用的范围之内。”秦天宝表示,此次对野生动物保护法的修改,则明确为检察机关等开展野生动物保护公益诉讼提供了直接法律依据,这同时也有利于调动相关社会组织开展野生动物保护公益诉讼的积极性。

  唐家河国家级自然保护区(以下简称唐家河保护区)是大熊猫的重要栖息地,属2019年1月挂牌成立的大熊猫国家公园岷山片区。2015年以来,四川省青川县某肉羊养殖场以及村民韩某某等长期在唐家河保护区内违法放牧,破坏了大熊猫及其伞护的野生动植物的生态环境,尽管唐家河保护区管理处针对上述违法行为多次向有关主管部门书面报告,但问题未能得到解决。

  2020年5月,青川县检察院主动走访县内自然保护区时发现该案件线索,以行政公益诉讼立案,督促行政主管部门依法履职。同时,检察机关兼顾自然保护区生态环境保护和养殖户合法权益,推动党委政府召开专题会议研究部署养殖户退出自然保护区补偿问题,引导自然保护区原住居民利用现有资源发展乡村振兴产业中的重点项目、有偿参与国家公园管理。

  “本案是中国大熊猫栖息地保护检察公益诉讼第一案,彰显检察公益诉讼制度在推进国家公园建设中的积极作用。”最高人民检察院公益诉讼检察厅厅长胡卫列介绍,自2020年以来,全国检察机关共立案办理生物多样性保护公益诉讼案件2万余件,既涉及国家保护的陆生、水生野生动植物,也涉及动物栖息地、自然保护区,以及对外来入侵物种的防治和本地重要生物种群的保护等。

  “如今公益诉讼条款写入野生动物保护法,将有助于进一步加强检察机关与林业和草原、农业农村、生态环境等部门在野生动物保护方面的协作配合,形成公益保护合力。”胡卫列表示,下一步,检察机关将深入调研野生动物保护领域公益诉讼案件办理情况、制定相关办案指引,指导各级检察机关规范办理此类公益诉讼案件。

  版式设计:蔡华伟

  本报记者 张 璁

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 第五套人民币将要发行

  • 同筑生态文明之基 同走绿色发展之路

独家策划

推荐阅读
凤凰微彩广电总局电视剧司负责人就《“十四五”中国电视剧发展规划》答记者问
2024-04-25
凤凰微彩《解放了》曝幕后花絮 “城市巷战”场景首公开
2023-11-03
凤凰微彩陕西省委原秘书长钱引安被双开:一再拒绝党组织挽救
2023-10-24
凤凰微彩一场牵动资本市场全局的改革
2024-04-16
凤凰微彩国内首款油电混动MPV 奥德赛锐·混动今上市
2023-10-04
凤凰微彩 常德杀害滴滴司机大学生被诊抑郁症 有限定刑事责任能力
2023-12-22
凤凰微彩 看到嫩版吴彦祖,和萌版范丞丞不心动算我输!这些校草我锁了
2024-03-04
凤凰微彩回顾:平行志愿这样填不浪费分
2023-09-25
凤凰微彩夏威夷“天堂阶梯”:惊险无比,曾因太危险被政府关闭!
2023-12-25
凤凰微彩与韩国瑜缺乏互信?吴敦义怒斥吴韩会非“鸿门宴”
2023-10-11
凤凰微彩节前盘整节后企稳反弹
2023-12-06
凤凰微彩锁定下赛季美巡全卡 张新军喜赢韦巡赛首冠
2023-11-09
凤凰微彩[找对象] 气质满分妹子 爱宠物爱生活
2023-09-25
凤凰微彩走出无效努力的怪圈:对的方向比努力更重要
2023-12-13
凤凰微彩91岁篮球“技术粉”现场看比赛 俱乐部专门给配医生
2023-12-13
凤凰微彩新版第五套人民币亮相 各币种票面全变样
2023-09-28
凤凰微彩差点将蒋介石气疯的"黄埔三鹰"
2023-08-25
凤凰微彩怕衰老?“年轻因子”了解一下
2024-05-28
凤凰微彩日本反舰导弹射程将翻倍 日媒:可覆盖台湾海峡
2024-05-30
凤凰微彩江苏盐城化工厂爆炸厂区被完全摧毁 核心区现巨坑
2023-09-08
凤凰微彩《全职高手之巅峰荣耀》首曝海报 电竞少年出征
2024-05-06
凤凰微彩谷歌已经连续6个月没有更新Android版本饼图了
2023-10-14
凤凰微彩 深圳9岁男童遭3只大狗追撵,狗主人全程淡定
2024-05-07
凤凰微彩全力一搏“雪游龙”
2024-01-21
加载更多
凤凰微彩地图